

<u>AEDU, 2024</u> Johan.Rens@ieee.org

Network operations: Back to the future

"A journey where field data, a good understanding and innovative solutions become enablers of the future" – Anonymous, ErongoRED

Introduction

- Namibian electricity distribution digital era present interesting opportunities
- A highly meshed network with multiple transmission connections and high fault levels, serving customers well that is a lesser challenge.
- A Namibian distribution network lower fault levels serving smaller loads, distributed over long distances, and with limited transmission infeeds and limited network contingencies, a challenge worthy of consideration.
- To measure is to know -well-developed solutions and operational (#1)
- A well-developed user-friendly network simulator (#2)
- From fundamental network principles to a digital support tool: the ErongoRED case made simple The Digital Twin is born (#1 + #2)
- ErongoRED to be ready for possible significant investments (and growth)

What is a Digital Twin? $\left[M \right] \in F$

- Virtual replica of an electrical distribution system (i.e.)
- Near real-time simulation, analysis and control as and when needed.
- To support operational (and energy) efficiency, reliability, serving end-user.
- It is a concept of "thinking": Integrating various sources of information and resources
- ErongoRED: An accurate electrical equivalent circuit simulated and supported by real-time field data
- Network simulation not only to plan future network operation and investment;
- But a network computer model that accept measured field data to estimate/predict how a specific network contingency is affecting voltage stability/quality - end-user service levesl
- In near- real-time simple operating features accessible to operators/engineers
- Validated (true) network performance support operational decision making

Where is an opportunity for ErongoRED?

- The physical (as-is) specifications of the ErongoRED network exists.
- A network equivalent model using first principles has been (mostly) constructed.
- It includes network contingencies (switching i.e. maintenance)
- DigSilent as implementation platform
- Comprehensive: modeling, analysis, and simulation from basic to complex configurations and to include distributed renewable energy sources
- Comprehensive monitoring of load flow and voltage quality in near real-time it exists.
- If a DigSilent simulation/prediction can be done, using recent ("just now") measurements to reflect the network state, then the assessment of voltage performance when a configuration change is considered, being a reliable prediction, is useful/practical.
- Digital model: predict impact on end-user where no monitoring is done "state estimation"
- = A Digital Twin is no a longer a new-born

Voltage quality- the perfect world

- Linear load Source impedance set voltage regulation
- The perfect load is linear voltage "looks" like current
- Such as a perfect resistance

Voltage quality – in the near perfect world

Voltage quality and non-linear loads

- Nonlinear loading
- Sufficient (high fault level)
- Voltage THD "acceptable"
- PQ is "compatible"

-200 -300

-500 L 0

Offset=0

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.02

Voltage quality in the real world

Case study: Mitigation of voltage distortion

• What is the root-case of voltage harmonics?

Case study: How to mitigate voltage waveform distortion

- Harmonic current must not flow in supply network (Ohms law!)
- Prevent harmonic voltage drop across supply impedance (Ohms law)
- 1) Do not withdraw harmonic currents: active "front-ends" expensive
- 2) Active harmonic filter power electronics, high maintenance and energy losses
- 3) Passive harmonic filters in different configurations:
 - a) Tuned well: customised design to not affect network impedance profile
 - b) Designed to be self-tuning hybrid passive filters
 - c) Energy-efficient, robust, low maintenance
 - d) But: need careful design and network analysis and verification by modelling (the one Digital Twin – DigSilent i.e.)

Choose the harmonics

Briefly: What voltage emission is about

Passive harmonic filter: trap harmonic current

Harmonic amplification – by resonance

Impedance can be very low, or very high, at specific frequencies - resonance

Series and parallel resonant paths will exist, always, in any power system

$$Z(f)_{Series} = R + j2\pi fL + \frac{1}{j2\pi fC} = R + jX_L - jX_C$$

If harmonics do not align with resonant frequency, not a concern – need to know where resonant points are = DigSilent

$$\mathbf{Z}(f)_{Parallel} = R + \frac{(j2\pi fL) \times \left(\frac{1}{j2\pi fC}\right)}{(j2\pi fL) - \left(\frac{j}{2\pi fC}\right)}$$

Example of harmonic resonant amplification

Parallel resonance

The harmonic resonant path(s)

Filter design demonstration

Harmonic filter should trap harmonic currents from distorting load, and not be overloaded by harmonic currents from grid

Harmonic filter: Theoretical performance (1)

Harmonic filter: Theoretical performance (2)

Field measurements: Voltage THD

Field measurements: harmonic voltages

Field measurements: harmonic currents

Conclusion

- Feel free to invest in ErongoRED: The commitment to serve customers well, is real.
- Operational risk to end-users are being monitored, managed well.
 - System technical performance: Daily and historical data is available.
 - SCADA to track load flow, configurations, network operations
 - Capable field teams to do field work
 - Containing financial risk: Embedded generation for self-consumption, less consumers, same operational costs vs lower income
- Network planning is done and supported by a verification tool: DigSilent
- Innovation to remain financially viable within a dynamic business model
- Realising the vision of ErongoRED:

Enabling growth through innovative electricity distribution and supply to our communities.